1st European Pressure Equipment Research Council Conference Roma, Italia, April 2019

A finite element analysis comparison study of the proposed new CEN method for the design of conical shells under combined loadings

Professor David Nash & Sean Brannan
University of Strathclyde Glasgow, Scotland d.nash@strath.ac.uk

Simon Earland
BSi Consultant
Earland Engineering
UK

Conical Vessel Design

- EN13445 provides rules for the design of pressurised conical shells based on former East German TGL rules
- These have also been adopted into the UK PD5500 code
- The main shell thickness, e con, is evaluated on the basis of a pressure calculation satisfying simple equilibrium

$$e_{con} = \frac{P \cdot D_{e}}{2f \cdot z + P} \cdot \frac{1}{\cos(\alpha)}$$

Where P is the internal pressure, D, the diameter, f, the design stress, z, the joint efficiency and α the cone semi-apex angle

Discontinuity Analysis

Edge forces resulting in discontinuity stresses

Axi-symmetric FEA

An axi-symmetric finite element analysis of the cone/cylinder junctures made using conical shell elements results in the following deformed shape.

Cone without knuckle

Junction Reinforcement (1)

Geometry of cone/cylinder intersection without knuckle – Large end – EN13445 Figure 7.6-1

$$\beta = \frac{1}{3} \sqrt{\frac{D_{c}}{e_{j}}} \cdot \frac{\tan{(\alpha)}}{1 + 1/\sqrt{\cos(\alpha)}} - 0,15$$

$$e_{j} = \frac{P \cdot D_{c} \cdot \beta}{2f}$$

$$e_{j} = \frac{P \cdot D_{c} \cdot \beta}{2f}$$

Junction Reinforcement (2)

Geometry of cone/cylinder intersection with knuckle – Large end – EN13445 Figure 7.6-2

Junction Reinforcement (3)

when s < 1

$$\tau = s\sqrt{\frac{s}{\cos(\alpha)}} + \sqrt{\frac{1+s^2}{2}}$$

when $s \ge 1$

$$\tau = 1 + \sqrt{s \left\{ \frac{1 + s^2}{2\cos(\alpha)} \right\}}$$

 $P \le \frac{2f \cdot z \cdot e_1}{D_c \cdot \beta_H}$

$$\beta_{\rm H} = 0.4 \sqrt{\frac{D_{\rm c}}{e_1}} \cdot \frac{\tan(\alpha)}{\tau} + 0.5$$

lf

Geometry of cone/cylinder intersection – Small end – EN13445 Figure 7.6-3

Limitations

- Semi-apex angle greater than 75degrees
- · Cones for which

$$\frac{e_{\mathsf{a}} \cdot \cos(\alpha)}{D_{\mathsf{c}}} \le 0,001;$$

- Short cones joining to a jacket
- Limitations on each case for die-out distances
- NO method for global loads
 - thrust force
 - overturning moment
 - Interaction with pressure loading

University of Strathclyde Engineering

Global Loads - EN13445 Clause 16.14

- Rules are given for determining the minimum thickness of a cylindrical shell subject to a combination of loads in addition to pressure, at sections remote from the area of application of local loads and from structural discontinuities.
- Simple equilibrium calculations
- Simple interaction relationships
- Checks for maximum compressive stress
- Permissible compressive stress check
- Tolerance checks out-of-roundness
- Caution over wind and earthquake regions

Kiesewetter Method – new 16.15

- Proposed new method KM Method
- Limit analysis based on the formation of plastic hinges
- Postulated deformation modes
- Two calculation routes
 - Can be considered as a 'conical transition
 - Otherwise large and small ends considered seperately
- Loads applicable for FEA study

$$P = 0.3 \times \frac{2e_C f_C \cos \alpha}{D_L} \qquad \qquad M_{BS} = 0.3 \times \frac{\pi D_S^2 e_S f_S}{4}$$

$$F = -0.3 \times \pi D_s e_s f_s$$

Figure 2a: Sketch of conical transition loaded by int. pressure and axial force

Figure 2b: Deformed model for resulting axial tension force

Figure 2c: Deformed model for resulting axial compression force

University of Strathclyde Engineering

Parametric Range

Cone Angle (°)	e/D	D _S /D _L
15	0.002	0.2
30	0.005	0.3
45	0.01	0.45
60	0.02	0.65
75	0.05	0.8

Note: D_s/D_L is the ratio of small end to large end and e/D is 0.002 to 0.16.

Pass/Fail Criterion

$$Proportion \ of \ Allowable \ Stress = \frac{FEA \ Result}{f}$$

$$\max\{-(Z_T + F_{\text{PC}}) \; ; \; -Z_{\text{SS}} \; ; \; -Z_{\text{LL}} \; ; \; -Z_{\text{CS}} \; ; \; -Z_{\text{CL}}\} \leq F_{\text{RC}} \leq \min\{(Z_T - F_{\text{PC}}) \; ; \; Z_{\text{SS}} \; ; \; Z_{\text{LL}} \; ; \; Z_{\text{CS}} \; ; \; Z_{\text{CL}}\}$$

Proportion of Limit Load =
$$\frac{F_{RC}}{Limit Load}$$

$$Limit\ Ratio = \frac{Proportion\ of\ Limit\ Load}{Proportion\ of\ Allowable\ Stress}$$

- KM method has been implemented in Excel and FEA analysed
- There are modelling issues around the junctions cf. KM however for 'regular vessels' benchmark case is validated
- KM/FEA do not represent the junctions well and excessively high stresses result (can be fixed – but not with KM)
- Some parameter ratios should be withdrawn as they represent extreme cases (e.g. 75° case)
- Some thickness to diameter ratios also produce unrealistic relationships – excessively thick and thin configurations
- More work needed on representative parametric range
- Future limit analysis to be undertaken

A finite element analysis comparison study of the proposed new CEN method for the design of conical shells under combined loadings.

Thank You!

Professor David Nash University of Strathclyde Glasgow, Scotland

d.nash@strath.ac.uk